Opportunities for Neural-Inspired Ideas in High Performance Computing

Bruce Hendrickson
Director, Center for Computing Research
Sandia National Laboratories, Albuquerque, NM

University of New Mexico, Computer Science Dept.
We Live in Exciting Times

• The BRAIN Initiative
 – Improve understanding of neural processes and capabilities

• The National Strategic Computing Initiative
 – Multi-agency commitment to advanced computing
 – Includes research in non-traditional computing approaches

• The DOE-led Exascale Initiative
 – By mid-2020’s deploy systems exhibiting 10^{18} ops/second
Exascale Challenges

• From “Top 10 Exascale Research Challenges”
 – Power
 – Resilience
 – Complex memory hierarchies
 – High performance networking

• CMOS / von Neumann systems look to be unlikely to get us beyond a few exa-ops

• Can insights from neural systems provide ideas to address some of these challenges?
Possible Concepts

• Algorithms inspired by neural systems could
 – Manage memory hierarchies
 – Monitor machine state to enhance resilience
 – Find features in large computational data sets

• Perhaps as a co-processor, hardware inspired by neural systems could
 – Provide very low power computing model
 – Enable very fast, efficient matrix-vector multiplication
 – Support very fast, efficient sorting
 – Maybe enable efficient solutions to integral equations
Next Steps

• We need better theoretical models of neural-inspired computing approaches
 – Which neural-inspired concepts are most important and why?
 • Spike trains? Asynchrony? Co-local computing and memory?
 Connectivity? Approximate computing?

• We need neuroscientists working with computer architects and algorithm designers
 – Challenging cultural issues
 • Communities have different vocabularies, scientific objectives, frames of reference