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What are Hypervectors? 
 
 . High-dimensional, e.g., vectors of 10,000 
   - bits or 
   - integers or 
   - reals or 
   - complex numbers (phase angles) 
 
 . Random or pseudo-random 
 
 . Vector components are 
   - independent and 
   - identically distributed (i.i.d.) 
 
 



 
It is possible to build a fully general system of 
computing based on hypervectors.  Computing is 
transparent and has many positive qualities we 
associate with brains: 
 
 . Robust and noise-tolerant 
 
 . Learns from data/example, learns by analogy 
 
 . Can learn fast: "One-shot" learning ("1" ≈ 5) 
 
 . Integrates signals from disparate senses 
 
 . Allows simple algorithms that scale to large 
   problems efficiently 
 
 . Allows high degree of parallelism 
 
 



 
Example from analogy: 
 
The question 
 
  What is the Dollar of Mexico? 
 
is readily understood by us but is a constant 
challenge to traditional AI and neural nets 
 
It can be solved with hypervector mapping 
 



 
This talk is about the mathematical theory of 
hypervector computing 
 
The theory dates to the 1990s and is referred to 
variously as Holographic Reduced Representation 
(Plate), Binary Spatter Code (Kanerva), and 
Vector-Symbolic Architecture (Gayler & Levy) 
 
The underlying math dates to the late 1800s and 
early 1900s and is referred to as abstract 
algebra or "modern" algebra 
 
The math is subtle but simpler than the name 
"abstract algebra" might suggest 
 



 
The theory can be made practical by nanotechnology 
 
 . Requires very large circuits 
 
 . Tolerates variation in the components 
 
 . Allows high degree of parallelism, reducing 
   the need for fast switching 
 
   - Hence energy-efficient 
 
 
Computing with hypervectors complements 
traditional numeric, symbolic, and neural-net 
computing/deep learning 
 
 



 
Computing with Hypervectors resembles ordinary 
computing with Booleans and numbers, including 
 
 . A memory for the vectors: High-capacity 
   long-term storage that is content-addressable 
 
 . Operations on the vectors akin to addition and 
   multiplication 
 
   - The operations form an algebraic system that 
     is richer than a field 
 
 
   NOTE: The power and utility of number 
   arithmetic is based on the algebra of fields 
 
   CAUTION: The algebra of hypervectors is not 
   identical to, or part of, linear algebra 
 



Operations on Hypervectors: An example 
 
 . Seed vectors: 10,000 randomly placed 1s and -1s 
 
             1  2  3          ....          10,000 
          .------------------------------------. 
     A =  | +1 -1 -1 +1 -1 -1 .... +1 +1 -1 +1 | 
          '------------------------------------' 
 
 . A seed vector can represent a letter of the 
   alphabet, for example 
 
 
 . Addition (+): Coordinate by coordinate 
 
       A =  +1 -1 -1 +1 -1 -1 .... +1 +1 -1 +1 
       B =  +1 +1 +1 +1 -1 +1 .... -1 +1 +1 +1 
       C =  -1 -1 +1 -1 -1 +1 .... -1 -1 -1 +1 
   -------------------------------------------- 
   A+B+C =  +1 -1 +1 +1 -3 +1 .... -1 +1 -1 +3 



 
 . Multiplication (*): Coordinate by coordinate 
 
       A =  +1 -1 -1 +1 -1 -1 .... +1 +1 -1 +1 
       B =  +1 +1 +1 +1 -1 +1 .... -1 +1 +1 +1 
    ------------------------------------------- 
     A*B =  +1 -1 -1 +1 +1 -1 .... -1 +1 -1 +1 
 
     NOTE: A*A = 1 1 1 1 ... 1 1 -> self-inverse 
 
 
 . Permutation (r): Rotation of coordinates 
 
       A =  +1 -1 -1 +1 -1 -1 .... +1 +1 -1 +1 
               /  /  /  /  /       /  /  /  / 
              /  /  /  /  /       /  /  /  / 
      rA =  -1 -1 +1 -1 -1 .... +1 +1 -1 +1 +1 



 
 . Similarity between vectors: Cosine 
 
      cos(A, A) = 1 
 
      cos(A,-A) = -1 
 
      cos(A, B) = 0 if A and B are orthogonal  
 
      The blessing of dimensionality: A randomly 
      chosen hypervector is approximately 
      orthogonal (dissimilar) to any vector seen 
      so far 



 
Key features of hypervector algebra; [*] denotes 
a property not shared by number fields 
 
 . Addition commutes: A + B = B + A 
 
 . Addition, multiplication and [*]permutation are 
   invertible 
 
 . Multiplication distributes over addition 
 
 . Permutation distributes over both addition 
   and multiplication [*] 
 
 . The output of addition is similar to the 
   inputs [*] 
 
 . The outputs of multiplication and permutation 
   are dissimilar to the inputs [*] 
 



 
 . Multiplication and permutation preserve 
   similarity [*] 
 
 
How are the operations used? 
 
 A, B, C, P, R, S, X, Y, Z are 10,000-D random 
 
 . Encoding a pair with multiplication 
   (associating variable x with value a, also 
   called binding): p = (x,a) 
 
      P = X*A 
 
 . Extracting the value of x from the pair: 
 
      X*P = X*(X*A) = (X*X)*A = A 
                      (X*X canels out)



 
 . Encoding a set with addition: s = {a,b,c} 
 
      S = A + B + C 
 
 
 . Encoding a data record with a set of bound 
   pairs: d = ‘(x = a) & (y = b) & (z = c)' 
 
      D = X*A + Y*B + Z*C 
 
 . Extracting the value of x from the record: 
 
      X*D = X * (X*A + Y*B + Z*C) 
          = X*X*A + X*Y*B + X*Z*C 
          = X*X*A + (X*Y*B + X*Z*C) 
          =     A +      noise 
          ≈ A 
 
 



 
 . Encoding a sequence with rotation and 
   multiplication: (a,b) 
 
      AB = rA * B 
 
 . Extending AB with C: (a,b,c) 
 
      ABC = r(AB) * C 
          = rrA * rB * C 
 
 . Extracting the first element of ABC: 
 
      ss(ABC * BC) = ss(rrA * rB * C * rB * C) 
                   = ss(rrA) 
                   = A 
 
   where s is the inverse (counter-rotate) of r 
 
 



 
The representation is holographic: Every piece of 
information is distributed over every coordinate 
 
 . Every subset of coordinates is computing the 
   same thing, only less accurately 
 
 . No coordinate is critical 
 
   - Hence robustness 
 
The set of operations is complete: 
 
 . We could implement hypervector Lisp 
 
 



Examples of Hypervector Computing 
 
1. Language Vectors: We made 10,000-D language 
vectors for 21 EU languages from seed vectors 
representing letters.  Projected onto a plane, 
the languages cluster according to known families: 
 
 
                                      Italian 
                                       *    *Romanian 
                                      Portuguese 
                                       *    *Spanish 
     *Slovene                                   *French 
*Bulgari *Czech 
      *Slovak                                    *English 
                           *Greek 
   *Polish                      *Lithuanian 
                                 *Latvian 
                           *Estonian 
                    *       *Finnish 
                   Hungarian 
 
 
                                                *Dutch 
                                        *Danish  *German 
                                           *Swedish 



 
We tested the language vectors' ability to 
identify languages by comparing them to vectors 
for 21,000 test sentences (1,000 sentences from 
each language).  The best match agreed with the 
correct language 97.8% of the time. 



2. Semantic Vectors with Random Indexing 
 
We computed semantic vectors for words from seed 
vectors representing documents and achieved TOEFL 
scores (Test of English as a Foreign Language) 
on par with LSA's (Latent Semantic Analysis). 
LSA relies on compute-heavy Singular Value 
Decomposition; its complexity grows with the 
square of the number of documents.  Random 
Indexing is linear in the number of documents 
and scales easily to millions of documents. 
 
 . Random indexing processed through 37,000 
   documents in 10 minutes vs. LSA's 2+ hours (in 
   2000).  Extended to a million documents: 10 
   hours for Random Indexing vs. 300 days for LSA. 
 
Random indexing is a form of Random Projections.   
A company in Sweden has scanned news articles in 
several languages with random indexing since 2008 



 
3. Analogical Mapping with Multiplication by 
   Hypervector 
 
  What is the Dollar of Mexico? 
 
Encoding of USA and MEXico: Name of country, 
 Capital city, Monetary unit 
 
  USA = Nam*Us + Cap*Dc + Mon*$ 
  MEX = Nam*Mx + Cap*Mc + Mon*P 
 
Pairing up the two--binding 
 
  Pair = USA*MEX 
 
Analyzing the pair 
 
  Pair = Us*Mx + Dc*Mc + $*P + noise 
 



 
Literal interpretation of Dollar of Mexico 
produces nonsense: 
 
 $*MEX = $ * (Nam*Mx + Cap*Mc + Mon*P) 
       = $*Nam*Mx + $*Cap*Mc + $*Mon*P 
       =  noise   +  noise   +  noise 
          (nothing cancels out) 
 
 
However, what in Mexico corresponds to Dollar in USA? 
 
 $*Pair = $ * (USA*MEX) 
        = $ * (Us*Mx + Dc*Mc + $*P + noise) 
        = $*Us*Mx + $*Dc*Mc + $*$*P + $*noise 
        =  noise  +  noise  +     P +  noise 
        = P + noise 
        ≈ P 



Parting Thoughts 
 
 . The cognitive/computational powers of the brain 
   are intimately related to the mathematical 
   properties of high-dimensional spaces 
 
   - Truly high: D = 10,000 ... 100,000 
 
 . Such spaces can be understood in terms of their 
   geometry and algebra 
 
 . A mode of computing that exploits these 
   properties is made practical by nanotechnology 
 
With thanks to my colleagues and collaborators 
in exploring high-D representation: Aditya Joshi, 
Johan Halseth, Andrew Liu, Anna Pham, Quinn Tran, 
Mika Laiho, Paxon Frady, Abbas Rahimi, Jan Rabaey, 
Fritz Sommer, and Bruno Olshausen, and to funding 
by DARPA/SRC/SONIC and Intel 
 



 
Computing with Hypervectors 
 
Abstract: 
Hypervectors are high-dimensional (e.g., D = 10,000), (pseudo)random, 
with independent identically distributed (i.i.d.) components. 
Computing with hypervectors is an alternative to conventional (von 
Neumann) computing with Booleans and numbers, and to neural nets and 
deep learning trained with gradient descent (error back-propagation). 
At the core is an algebra of operations on vectors, resembling the 
algebra of numbers that makes computing with numbers so useful.  New 
representations are computed from existing ones very fast compared to 
arriving at them through gradient descent, and the algebra allows 
composed vectors to be factored into their constituents.  Computing 
with hypervectors resembles traditional neural nets in its reliance on 
distributed representation, making it tolerant of noise and component 
failure.  It fills the gap between traditional and neural-net 
computing, and the architecture is ideal for realization in 
nanoelectronics. 
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