

COMPUTING WITH HYPERVECTORS

Pentti Kanerva

Redwood Center for Theoretical Neuroscience
UC Berkeley

What are Hypervectors?

 . High-dimensional, e.g., vectors of 10,000
 - bits or
 - integers or
 - reals or
 - complex numbers (phase angles)

 . Random or pseudo-random

 . Vector components are
 - independent and
 - identically distributed (i.i.d.)

It is possible to build a fully general system of
computing based on hypervectors. Computing is
transparent and has many positive qualities we
associate with brains:

 . Robust and noise-tolerant

 . Learns from data/example, learns by analogy

 . Can learn fast: "One-shot" learning ("1" ≈ 5)

 . Integrates signals from disparate senses

 . Allows simple algorithms that scale to large
 problems efficiently

 . Allows high degree of parallelism

Example from analogy:

The question

 What is the Dollar of Mexico?

is readily understood by us but is a constant
challenge to traditional AI and neural nets

It can be solved with hypervector mapping

This talk is about the mathematical theory of
hypervector computing

The theory dates to the 1990s and is referred to
variously as Holographic Reduced Representation
(Plate), Binary Spatter Code (Kanerva), and
Vector-Symbolic Architecture (Gayler & Levy)

The underlying math dates to the late 1800s and
early 1900s and is referred to as abstract
algebra or "modern" algebra

The math is subtle but simpler than the name
"abstract algebra" might suggest

The theory can be made practical by nanotechnology

 . Requires very large circuits

 . Tolerates variation in the components

 . Allows high degree of parallelism, reducing
 the need for fast switching

 - Hence energy-efficient

Computing with hypervectors complements
traditional numeric, symbolic, and neural-net
computing/deep learning

Computing with Hypervectors resembles ordinary
computing with Booleans and numbers, including

 . A memory for the vectors: High-capacity
 long-term storage that is content-addressable

 . Operations on the vectors akin to addition and
 multiplication

 - The operations form an algebraic system that
 is richer than a field

 NOTE: The power and utility of number
 arithmetic is based on the algebra of fields

 CAUTION: The algebra of hypervectors is not
 identical to, or part of, linear algebra

Operations on Hypervectors: An example

 . Seed vectors: 10,000 randomly placed 1s and -1s

 1 2 3 10,000
 .------------------------------------.
 A = | +1 -1 -1 +1 -1 -1 +1 +1 -1 +1 |
 '------------------------------------'

 . A seed vector can represent a letter of the
 alphabet, for example

 . Addition (+): Coordinate by coordinate

 A = +1 -1 -1 +1 -1 -1 +1 +1 -1 +1
 B = +1 +1 +1 +1 -1 +1 -1 +1 +1 +1
 C = -1 -1 +1 -1 -1 +1 -1 -1 -1 +1
 --
 A+B+C = +1 -1 +1 +1 -3 +1 -1 +1 -1 +3

 . Multiplication (*): Coordinate by coordinate

 A = +1 -1 -1 +1 -1 -1 +1 +1 -1 +1
 B = +1 +1 +1 +1 -1 +1 -1 +1 +1 +1

 A*B = +1 -1 -1 +1 +1 -1 -1 +1 -1 +1

 NOTE: A*A = 1 1 1 1 ... 1 1 -> self-inverse

 . Permutation (r): Rotation of coordinates

 A = +1 -1 -1 +1 -1 -1 +1 +1 -1 +1
 / / / / / / / / /
 / / / / / / / / /
 rA = -1 -1 +1 -1 -1 +1 +1 -1 +1 +1

 . Similarity between vectors: Cosine

 cos(A, A) = 1

 cos(A,-A) = -1

 cos(A, B) = 0 if A and B are orthogonal

 The blessing of dimensionality: A randomly
 chosen hypervector is approximately
 orthogonal (dissimilar) to any vector seen
 so far

Key features of hypervector algebra; [*] denotes
a property not shared by number fields

 . Addition commutes: A + B = B + A

 . Addition, multiplication and [*]permutation are
 invertible

 . Multiplication distributes over addition

 . Permutation distributes over both addition
 and multiplication [*]

 . The output of addition is similar to the
 inputs [*]

 . The outputs of multiplication and permutation
 are dissimilar to the inputs [*]

 . Multiplication and permutation preserve
 similarity [*]

How are the operations used?

 A, B, C, P, R, S, X, Y, Z are 10,000-D random

 . Encoding a pair with multiplication
 (associating variable x with value a, also
 called binding): p = (x,a)

 P = X*A

 . Extracting the value of x from the pair:

 X*P = X*(X*A) = (X*X)*A = A
 (X*X canels out)

 . Encoding a set with addition: s = {a,b,c}

 S = A + B + C

 . Encoding a data record with a set of bound
 pairs: d = ‘(x = a) & (y = b) & (z = c)'

 D = X*A + Y*B + Z*C

 . Extracting the value of x from the record:

 X*D = X * (X*A + Y*B + Z*C)
 = X*X*A + X*Y*B + X*Z*C
 = X*X*A + (X*Y*B + X*Z*C)
 = A + noise
 ≈ A

 . Encoding a sequence with rotation and
 multiplication: (a,b)

 AB = rA * B

 . Extending AB with C: (a,b,c)

 ABC = r(AB) * C
 = rrA * rB * C

 . Extracting the first element of ABC:

 ss(ABC * BC) = ss(rrA * rB * C * rB * C)
 = ss(rrA)
 = A

 where s is the inverse (counter-rotate) of r

The representation is holographic: Every piece of
information is distributed over every coordinate

 . Every subset of coordinates is computing the
 same thing, only less accurately

 . No coordinate is critical

 - Hence robustness

The set of operations is complete:

 . We could implement hypervector Lisp

Examples of Hypervector Computing

1. Language Vectors: We made 10,000-D language
vectors for 21 EU languages from seed vectors
representing letters. Projected onto a plane,
the languages cluster according to known families:

 Italian
 * *Romanian
 Portuguese
 * *Spanish
 *Slovene *French
*Bulgari *Czech
 *Slovak *English
 *Greek
 *Polish *Lithuanian
 *Latvian
 *Estonian
 * *Finnish
 Hungarian

 *Dutch
 *Danish *German
 *Swedish

We tested the language vectors' ability to
identify languages by comparing them to vectors
for 21,000 test sentences (1,000 sentences from
each language). The best match agreed with the
correct language 97.8% of the time.

2. Semantic Vectors with Random Indexing

We computed semantic vectors for words from seed
vectors representing documents and achieved TOEFL
scores (Test of English as a Foreign Language)
on par with LSA's (Latent Semantic Analysis).
LSA relies on compute-heavy Singular Value
Decomposition; its complexity grows with the
square of the number of documents. Random
Indexing is linear in the number of documents
and scales easily to millions of documents.

 . Random indexing processed through 37,000
 documents in 10 minutes vs. LSA's 2+ hours (in
 2000). Extended to a million documents: 10
 hours for Random Indexing vs. 300 days for LSA.

Random indexing is a form of Random Projections.
A company in Sweden has scanned news articles in
several languages with random indexing since 2008

3. Analogical Mapping with Multiplication by
 Hypervector

 What is the Dollar of Mexico?

Encoding of USA and MEXico: Name of country,
 Capital city, Monetary unit

 USA = Nam*Us + Cap*Dc + Mon*$
 MEX = Nam*Mx + Cap*Mc + Mon*P

Pairing up the two--binding

 Pair = USA*MEX

Analyzing the pair

 Pair = Us*Mx + Dc*Mc + $*P + noise

Literal interpretation of Dollar of Mexico
produces nonsense:

 $*MEX = $ * (Nam*Mx + Cap*Mc + Mon*P)
 = $*Nam*Mx + $*Cap*Mc + $*Mon*P
 = noise + noise + noise
 (nothing cancels out)

However, what in Mexico corresponds to Dollar in USA?

 $*Pair = $ * (USA*MEX)
 = $ * (Us*Mx + Dc*Mc + $*P + noise)
 = $*Us*Mx + $*Dc*Mc + $*$*P + $*noise
 = noise + noise + P + noise
 = P + noise
 ≈ P

Parting Thoughts

 . The cognitive/computational powers of the brain
 are intimately related to the mathematical
 properties of high-dimensional spaces

 - Truly high: D = 10,000 ... 100,000

 . Such spaces can be understood in terms of their
 geometry and algebra

 . A mode of computing that exploits these
 properties is made practical by nanotechnology

With thanks to my colleagues and collaborators
in exploring high-D representation: Aditya Joshi,
Johan Halseth, Andrew Liu, Anna Pham, Quinn Tran,
Mika Laiho, Paxon Frady, Abbas Rahimi, Jan Rabaey,
Fritz Sommer, and Bruno Olshausen, and to funding
by DARPA/SRC/SONIC and Intel

Computing with Hypervectors

Abstract:
Hypervectors are high-dimensional (e.g., D = 10,000), (pseudo)random,
with independent identically distributed (i.i.d.) components.
Computing with hypervectors is an alternative to conventional (von
Neumann) computing with Booleans and numbers, and to neural nets and
deep learning trained with gradient descent (error back-propagation).
At the core is an algebra of operations on vectors, resembling the
algebra of numbers that makes computing with numbers so useful. New
representations are computed from existing ones very fast compared to
arriving at them through gradient descent, and the algebra allows
composed vectors to be factored into their constituents. Computing
with hypervectors resembles traditional neural nets in its reliance on
distributed representation, making it tolerant of noise and component
failure. It fills the gap between traditional and neural-net
computing, and the architecture is ideal for realization in
nanoelectronics.

2016 Neuro-Inspired Computational Elements Workshop (NICE 2016)
Tuesday 8 March 2016
10:10-10:35
