“Something we can really add to the field is being able to understand at a much higher level how sounds become meaningful words and concepts.”
Liberty Hamilton, PhD program alum (entering class of 2008)
Because natural sounds such as music and language are so fast and complex, it can be challenging to study how they are represented in the brain. Liberty Hamilton, Assistant Professor at the University of Texas at Austin in the departments of Communication Sciences and Disorders and Neurology, uses a unique approach to overcome this challenge — a technique called electrocorticography (ECoG), where a grid of electrodes is placed directly on the surface of the brain in patients undergoing surgery for epilepsy. Hamilton and her team can then record directly from the surface of the cerebral cortex while the patients are talking or listening to sounds, allowing them to observe neural activity related to speech and language with high spatial and temporal resolution.
As an undergraduate at Scripps College, where she “almost minored” in other fields involving sound — Spanish and piano performance — Hamilton found she was fascinated by the neuroscience underlying sound production and perception. After graduating, she worked as a research assistant doing neuroimaging on patients with schizophrenia. This experience led her to go on to earn a PhD, which she did in the lab of Shaowen Bao at Berkeley, who is now at the University of Arizona. In the Bao lab, she studied sound representation in the auditory cortex in rodents.
After earning her PhD in 2013, Hamilton wanted to return to working with humans, in part because “it’s hard to ask mice what they are thinking and to get them to do what you want them to do.” She began using ECoG as way to study the neurobiology of language as a postdoctoral fellow in the lab of Edward Chang at UCSF. Now in her second year as a faculty member, Hamilton uses ECoG as well as other techniques to study speech and language, and their development, in adults and children.