PhD program alum Liberty Hamilton eavesdrops on how the human brain processes natural sounds

March 6, 2019

“Something we can really add to the field is being able to understand at a much higher level how sounds become meaningful words and concepts.”

Liberty Hamilton, PhD program alum (entering class of 2008)

Because natural sounds such as music and language are so fast and complex, it can be challenging to study how they are represented in the brain. Liberty Hamilton, Assistant Professor at the University of Texas at Austin in the departments of Communication Sciences and Disorders and Neurology, uses a unique approach to overcome this challenge — a technique called electrocorticography (ECoG), where a grid of electrodes is placed directly on the surface of the brain in patients undergoing surgery for epilepsy. Hamilton and her team can then record directly from the surface of the cerebral cortex while the patients are talking or listening to sounds, allowing them to observe neural activity related to speech and language with high spatial and temporal resolution.

As an undergraduate at Scripps College, where she “almost minored” in other fields involving sound — Spanish and piano performance — Hamilton found she was fascinated by the neuroscience underlying sound production and perception. After graduating, she worked as a research assistant doing neuroimaging on patients with schizophrenia. This experience led her to go on to earn a PhD, which she did in the lab of Shaowen Bao at Berkeley, who is now at the University of Arizona. In the Bao lab, she studied sound representation in the auditory cortex in rodents.

After earning her PhD in 2013, Hamilton wanted to return to working with humans, in part because “it’s hard to ask mice what they are thinking and to get them to do what you want them to do.” She began using ECoG as way to study the neurobiology of language as a postdoctoral fellow in the lab of Edward Chang at UCSF. Now in her second year as a faculty member, Hamilton uses ECoG as well as other techniques to study speech and language, and their development, in adults and children.

Read the following Q&A with Hamilton to learn more about her research, what it’s like to work with patients, and why she appreciates her experiences at HWNI even more now that she is a faculty member. This interview has been edited for brevity.

Rachel Henderson: How did you become interested in neuroscience?

Liberty Hamilton: That was a little bit of a winding path. I started out in undergrad as a geophysics major. That was because I had a summer job where I worked with a geophysics company. I saw that they got to travel a lot and go to really cool places with volcanoes and earthquakes and all that sort of stuff, so I thought I wanted to be a geophysicist. I started the classes and then I discovered that I didn’t care as much about geology as I should for someone who is going to do that (laughs).

Instead, I had been taking some other classes. I almost minored in Spanish and piano performance, and I was really interested in sound and how we understand sounds. I ended up taking an intro neuroscience class that I really, really liked. I later took a neurobiology lab course where we recorded action potentials in hippocampal slices, and that got me interested in neuroscience.

After that, I didn’t go to grad school right away because I wasn’t entirely sure that’s what I wanted to do as a career. I worked at UCLA for two years as a research assistant with Katherine Narr. We were doing studies on human fMRI, structural MRI, and DTI. It was a pretty small lab — it was just me and another research assistant to start out with. [Dr. Narr] really gave us a lot of feedback, and I got to work on papers with her and do some independent projects. That was really amazing, and I think that made me decide that’s what I wanted to do — that’s why I applied to grad school.

Hamilton with her portable ECoG recording equipment.

Hamilton with her portable ECoG recording equipment.

RH: How did you end up coming to Berkeley for your PhD?

LH: I knew I was interested in auditory neuroscience fairly broadly, but wasn’t entirely sure what level I wanted to study at — if I still wanted to do neuroimaging or if I wanted to do something more low-level.

I had a number of different schools I was trying to decide between. At the interview weekend at Berkeley, I got such a good feeling of camaraderie from the students who were there, and I had really good interactions with the professors at the interviews. It seemed like a place where not only was everyone really smart, but they were also really supportive and fun to be around. I realized that environment seemed really great, so that’s what led me there.

I ended up working with a number of excellent faculty members. In the end, I was really happy with the choice, both for science reasons and also personal reasons. Helen Wills was a really excellent place to be.

RH: Did you do some lab rotations before you joined your thesis lab?

LH: I did. I think that’s a huge benefit to the Helen Wills program. I think having the rotations is really important for both the student and the professor to get to know whether they work well together, and also whether the projects are of interest to them.

I rotated in Jack Gallant’s(link is external) lab, Frédéric Theunissen’s(link is external) lab, and Shaowen Bao’s(link is external) lab. I had an excellent experience in all of them. In my first rotation, with Jack, I was learning MATLAB. It was a more computational rotation, I was dealing with some of their fMRI data in natural vision. That was super fun and an interesting place to be, and great for getting my coding skills up and ready.

After that I rotated in Frédéric Theunissen’s lab, and did a behavioral project on perception of musical timbre. I was working with a postdoc named Taffeta Elliot(link is external) and we ran participants where we had them listen to different instrumental sounds and rate how different they were on various perceptual dimensions, and then looked at which acoustics correlated with that.  

Then I rotated with Shaowen Bao, whose lab I ended up joining. His lab studies auditory cortex development and plasticity using rodent models. During the rotation, I was learning how to train rats on discriminating different types of sounds. I also learned how to do electrophysiological extracellular recordings, which was super fun.

We had a really great team in the lab. There were three Helen Wills graduate students ahead of me — Heesoo Kim, Hania Köver, and Michèle Insanally — who took me under their collective wing and taught me how to do all this different stuff. So that ended up making me choose to go there, but I really could’ve gone to any of the three labs. It was really good to have done them all. I got a slightly different experience in each one, and got to see how different faculty run their labs, what the lab culture is like, what the problems are they are trying to solve, and learn different techniques at different levels — from more systems and molecular neuroscience to more cognitive neuroscience.

RH: Beyond the research, what was your experience like in Helen Wills?

LH: Helen Wills was a super supportive place, and I’ve come to realize that from seeing other graduate programs. Everywhere is different, but we were really privileged to have things like Neurofriends, for example, where you go to lunch with your fellow cohort of first-years and the department pays for it. I became really good friends with all the people in my cohort, I still talk to all of them. We’re now talking about faculty job searches or job searches in general. We’ve all stayed really close, and I think Neurofriends certainly helped with that.

Also, we had a lot of events, like the Brain Lunch Journal Club, which were always great too. We had a lot of great opportunities to both talk about science but also not talk about science. I have very fond memories of the retreat — just getting to spend time with other grad students and have people going through the same experience. Even though it’s sometimes really difficult, and you feel challenged, and maybe you feel like you don’t know as much as you would like to know, or maybe you are feeling kind of stupid, having other people who are also going through that was super helpful. I felt like all of them had my back.

Hamilton 3D-printing a tiny brain model in UT Austin’s Foundry.

Hamilton 3D-printing a tiny brain model in UT Austin’s Foundry.